ldexp, ldexpf, ldexpl
Defined in header
<math.h>
|
||
float ldexpf( float arg, int exp );
|
(1) | (since C99) |
double ldexp( double arg, int exp );
|
(2) | |
long double ldexpl( long double arg, int exp );
|
(3) | (since C99) |
Defined in header
<tgmath.h>
|
||
#define ldexp( arg, exp )
|
(4) | (since C99) |
arg
by the number 2 raised to the exp
power.arg
has type long double, ldexpl
is called. Otherwise, if arg
has integer type or the type double, ldexp
is called. Otherwise, ldexpf
is called, respectively.
Contents |
[edit] Parameters
arg | - | floating point value |
exp | - | integer value |
[edit] Return value
If no errors occur, arg
multiplied by 2 to the power of exp
(arg×2exp
) is returned.
If a range error due to overflow occurs, ±HUGE_VAL
, ±HUGE_VALF
, or ±HUGE_VALL
is returned.
If a range error due to underflow occurs, the correct result (after rounding) is returned.
[edit] Error handling
Errors are reported as specified in math_errhandling
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- Unless a range error occurs, FE_INEXACT is never raised (the result is exact)
- Unless a range error occurs, the current rounding mode is ignored
- If
arg
is ±0, it is returned, unmodified - If
arg
is ±∞, it is returned, unmodified - If
exp
is 0, thenarg
is returned, unmodified - If
arg
is NaN, NaN is returned
[edit] Notes
On binary systems (where FLT_RADIX is 2
), ldexp
is equivalent to scalbn.
The function ldexp
("load exponent"), together with its dual, frexp, can be used to manipulate the representation of a floating-point number without direct bit manipulations.
On many implementations, ldexp
is less efficient than multiplication or division by a power of two using arithmetic operators.
[edit] Example
#include <stdio.h> #include <math.h> #include <float.h> #include <errno.h> #include <fenv.h> #pragma STDC FENV_ACCESS ON int main(void) { printf("ldexp(7, -4) = %f\n", ldexp(7, -4)); printf("ldexp(1, -1074) = %g (minimum positive subnormal double)\n", ldexp(1, -1074)); printf("ldexp(nextafter(1,0), 1024) = %g (largest finite double)\n", ldexp(nextafter(1,0), 1024)); // special values printf("ldexp(-0, 10) = %f\n", ldexp(-0.0, 10)); printf("ldexp(-Inf, -1) = %f\n", ldexp(-INFINITY, -1)); //error handling errno = 0; feclearexcept(FE_ALL_EXCEPT); printf("ldexp(1, 1024) = %f\n", ldexp(1, 1024)); if(errno == ERANGE) perror(" errno == ERANGE"); if(fetestexcept(FE_OVERFLOW)) puts(" FE_OVERFLOW raised"); }
Possible output:
ldexp(7, -4) = 0.437500 ldexp(1, -1074) = 4.94066e-324 (minimum positive subnormal double) ldexp(nextafter(1,0), 1024) = 1.79769e+308 (largest finite double) ldexp(-0, 10) = -0.000000 ldexp(-Inf, -1) = -inf ldexp(1, 1024) = inf errno == ERANGE: Numerical result out of range FE_OVERFLOW raised
[edit] See also
(C99)(C99)
|
breaks a number into significand and a power of 2 (function) |
(C99)(C99)(C99)(C99)(C99)(C99)
|
computes efficiently a number times FLT_RADIX raised to a power (function) |
C++ documentation for ldexp
|