asinh, asinhf, asinhl
From cppreference.com
Defined in header
<math.h>
|
||
float asinhf( float arg );
|
(1) | (since C99) |
double asinh( double arg );
|
(2) | (since C99) |
long double asinhl( long double arg );
|
(3) | (since C99) |
Defined in header
<tgmath.h>
|
||
#define asinh( arg )
|
(4) | (since C99) |
1-3) Computes the inverse hyperbolic sine of
arg
4) Type-generic macro: If the argument has type long double,
asinhl
is called. Otherwise, if the argument has integer type or the type double, asinh
is called. Otherwise, asinhf
is called. If the argument is complex, then the macro invokes the corresponding complex function (casinhf, casinh, casinhl)
Contents |
[edit] Parameters
arg | - | floating point value representing the area of a hyperbolic sector |
[edit] Return value
If no errors occur, the inverse hyperbolic sine of arg
(sinh-1
(arg), or arsinh(arg)), is returned.
If a range error occurs due to underflow, the correct result (after rounding) is returned.
[edit] Error handling
Errors are reported as specified in math_errhandling
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- if the argument is ±0 or ±∞, it is returned unmodified
- if the argument is NaN, NaN is returned
[edit] Notes
Although the C standard names this function "arc hyperbolic sine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "inverse hyperbolic sine" (used by POSIX) or "area hyperbolic sine".
[edit] Example
Run this code
Output:
asinh(1) = 0.881374 asinh(-1) = -0.881374 asinh(+0) = 0.000000 asinh(-0) = -0.000000
[edit] See also
(C99)(C99)(C99)
|
computes inverse hyperbolic cosine (arcosh(x)) (function) |
(C99)(C99)(C99)
|
computes inverse hyperbolic tangent (artanh(x)) (function) |
(C99)(C99)
|
computes hyperbolic sine (sh(x)) (function) |
(C99)(C99)(C99)
|
computes the complex arc hyperbolic sine (function) |
C++ documentation for asinh
|
[edit] External links
Weisstein, Eric W. "Inverse Hyperbolic Sine." From MathWorld--A Wolfram Web Resource.