std::numeric_limits::epsilon
From cppreference.com
< cpp | types | numeric limits
static T epsilon();
|
(until C++11) | |
static constexpr T epsilon();
|
(since C++11) | |
Returns the machine epsilon, that is, the difference between 1.0 and the next value representable by the floating-point type T
. It is only meaningful if std::numeric_limits<T>::is_integer == false.
Contents |
[edit] Return value
T
|
std::numeric_limits<T>::epsilon() |
/* non-specialized */ | T();
|
bool | false |
char | 0 |
signed char | 0 |
unsigned char | 0 |
wchar_t | 0 |
char16_t | 0 |
char32_t | 0 |
short | 0 |
unsigned short | 0 |
int | 0 |
unsigned int | 0 |
long | 0 |
unsigned long | 0 |
long long | 0 |
unsigned long long | 0 |
float | FLT_EPSILON |
double | DBL_EPSILON |
long double | LDBL_EPSILON |
[edit] Exceptions
(none) | (until C++11) |
noexcept specification:
noexcept |
(since C++11) |
[edit] Example
Demonstrates the simplistic use of machine epsilon to compare floating-point values (this approach doesn't work for the subnormal values, for which the epsilon is meaningless)
Run this code
#include <cmath> #include <limits> #include <iomanip> #include <iostream> #include <type_traits> #include <algorithm> template<class T> typename std::enable_if<!std::numeric_limits<T>::is_integer, bool>::type almost_equal(T x, T y, int ulp) { // the machine epsilon has to be scaled to the magnitude of the larger value // and multiplied by the desired precision in ULPs (units in the last place) return std::abs(x-y) <= std::numeric_limits<T>::epsilon() * std::abs(x+y) * ulp; } int main() { double d1 = 0.2; double d2 = 1 / std::sqrt(5) / std::sqrt(5); if(d1 == d2) std::cout << "d1 == d2\n"; else std::cout << "d1 != d2\n"; if(almost_equal(d1, d2, 2)) std::cout << "d1 almost equals d2\n"; else std::cout << "d1 does not almost equal d2\n"; }
Output:
d1 != d2 d1 almost equals d2
[edit] See also
(C++11)(C++11)
|
next representable floating point value towards the given value (function) |