std::normal_distribution

From cppreference.com
< cpp‎ | numeric‎ | random
 
 
 
Pseudo-random number generation
Engines and engine adaptors
Generators
(C++11)
Distributions
Uniform distributions
Bernoulli distributions
Poisson distributions
Normal distributions
normal_distribution
(C++11)
Sampling distributions
Seed Sequences
(C++11)
C library
 
 
Defined in header <random>
template< class RealType = double >
class normal_distribution;
(since C++11)

Generates random numbers according to the Normal (or Gaussian) random number distribution. It is defined as:

f(x; μ,σ) =
1
σ
exp

-
1
2


x-μ
σ


2


Here μ is the mean and σ is the standard deviation (stddev).

Contents

[edit] Member types

Member type Definition
result_type RealType
param_type the type of the parameter set, unspecified

[edit] Member functions

constructs new distribution
(public member function)
resets the internal state of the distribution
(public member function)
Generation
generates the next random number in the distribution
(public member function)
Characteristics
returns the distribution parameters
(public member function)
gets or sets the distribution parameter object
(public member function)
returns the minimum potentially generated value
(public member function)
returns the maximum potentially generated value
(public member function)

[edit] Non-member functions

compares two distribution objects
(function)
performs stream input and output on pseudo-random number distribution
(function)

[edit] Example

#include <iostream>
#include <iomanip>
#include <string>
#include <map>
#include <random>
#include <cmath>
int main()
{
    std::random_device rd;
    std::mt19937 gen(rd());
 
    // values near the mean are the most likely
    // standard deviation affects the dispersion of generated values from the mean
    std::normal_distribution<> d(5,2);
 
    std::map<int, int> hist;
    for(int n=0; n<10000; ++n) {
        ++hist[std::round(d(gen))];
    }
    for(auto p : hist) {
        std::cout << std::fixed << std::setprecision(1) << std::setw(2)
                  << p.first << ' ' << std::string(p.second/200, '*') << '\n';
    }
}

Output:

-2 
-1 
 0 
 1 *
 2 ***
 3 ******
 4 ********
 5 **********
 6 ********
 7 *****
 8 ***
 9 *
10 
11 
12

[edit] External links