std::normal_distribution
From cppreference.com
Defined in header
<random>
|
||
template< class RealType = double >
class normal_distribution; |
(since C++11) | |
Generates random numbers according to the Normal (or Gaussian) random number distribution. It is defined as:
- f(x; μ,σ) =
1 σ√2π
⎜
⎝-1 2
⎜
⎝x-μ σ
⎟
⎠2
⎞
⎟
⎠
Here μ is the mean and σ is the standard deviation (stddev).
Contents |
[edit] Member types
Member type | Definition |
result_type
|
RealType |
param_type
|
the type of the parameter set, unspecified |
[edit] Member functions
constructs new distribution (public member function) |
|
resets the internal state of the distribution (public member function) |
|
Generation |
|
generates the next random number in the distribution (public member function) |
|
Characteristics |
|
returns the distribution parameters (public member function) |
|
gets or sets the distribution parameter object (public member function) |
|
returns the minimum potentially generated value (public member function) |
|
returns the maximum potentially generated value (public member function) |
[edit] Non-member functions
compares two distribution objects (function) |
|
performs stream input and output on pseudo-random number distribution (function) |
[edit] Example
Run this code
#include <iostream> #include <iomanip> #include <string> #include <map> #include <random> #include <cmath> int main() { std::random_device rd; std::mt19937 gen(rd()); // values near the mean are the most likely // standard deviation affects the dispersion of generated values from the mean std::normal_distribution<> d(5,2); std::map<int, int> hist; for(int n=0; n<10000; ++n) { ++hist[std::round(d(gen))]; } for(auto p : hist) { std::cout << std::fixed << std::setprecision(1) << std::setw(2) << p.first << ' ' << std::string(p.second/200, '*') << '\n'; } }
Output:
-2 -1 0 1 * 2 *** 3 ****** 4 ******** 5 ********** 6 ******** 7 ***** 8 *** 9 * 10 11 12
[edit] External links
- Weisstein, Eric W. "Normal Distribution." From MathWorld--A Wolfram Web Resource.
- Normal Distribution. From Wikipedia.