std::partial_sum

From cppreference.com
< cpp‎ | algorithm
 
 
 
Defined in header <numeric>
template< class InputIt, class OutputIt >
OutputIt partial_sum( InputIt first, InputIt last, OutputIt d_first );
(1)
template< class InputIt, class OutputIt, class BinaryOperation >

OutputIt partial_sum( InputIt first, InputIt last, OutputIt d_first,

                      BinaryOperation op );
(2)

Computes the partial sums of the elements in the subranges of the range [first, last) and writes them to the range beginning at d_first. The first version uses operator+ to sum up the elements, the second version uses the given binary function op.

Equivalent operation:

*(d_first)   = *first;
*(d_first+1) = *first + *(first+1);
*(d_first+2) = *first + *(first+1) + *(first+2);
*(d_first+3) = *first + *(first+1) + *(first+2) + *(first+3);
...

op must not have side effects.

(until C++11)

op must not invalidate any iterators, including the end iterators, or modify any elements of the ranges involved.

(since C++11)

Contents

[edit] Parameters

first, last - the range of elements to sum
d_first - the beginning of the destination range
op - binary operation function object that will be applied.

The signature of the function should be equivalent to the following:

 Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const &.
The type Type1 must be such that an object of type iterator_traits<InputIt>::value_type can be implicitly converted to Type1. The type Type2 must be such that an object of type InputIt can be dereferenced and then implicitly converted to Type2. The type Ret must be such that an object of type iterator_traits<InputIt>::value_type can be assigned a value of type Ret. ​

Type requirements
-
InputIt must meet the requirements of InputIterator.
-
OutputIt must meet the requirements of OutputIterator.

[edit] Return value

Iterator to the element past the last element written.

[edit] Complexity

Exactly (last - first) - 1 applications of the binary operation

[edit] Possible implementation

First version
template<class InputIt, class OutputIt>
OutputIt partial_sum(InputIt first, InputIt last, 
                     OutputIt d_first)
{
    return std::partial_sum(first, last, d_first, 
                            std::plus<InputIt, InputIt>());
}
Second version
template<class InputIt, class OutputIt, class BinaryOperator>
OutputIt partial_sum(InputIt first, InputIt last, 
                     OutputIt d_first, BinaryOperation op)
{
    if (first == last) return d_first;
 
    typename std::iterator_traits<InputIt>::value_type sum = *first;
    *d_first = sum;
 
    while (++first != last) {
       sum = op(sum, *first);
       *++d_first = sum;
    }
    return ++d_first;
}

[edit] Example

#include <numeric>
#include <vector>
#include <iostream>
#include <iterator>
#include <functional>
 
int main()
{
    std::vector<int> v = {2, 2, 2, 2, 2, 2, 2, 2, 2, 2};
 
    std::cout << "The first 10 even numbers are: ";
    std::partial_sum(v.begin(), v.end(), 
                     std::ostream_iterator<int>(std::cout, " "));
    std::cout << '\n';
 
    std::partial_sum(v.begin(), v.end(), v.begin(), std::multiplies<int>());
    std::cout << "The first 10 powers of 2 are: ";
    for (auto n : v) {
        std::cout << n << " ";
    }
    std::cout << '\n';
}

Output:

The first 10 even numbers are: 2 4 6 8 10 12 14 16 18 20 
The first 10 powers of 2 are: 2 4 8 16 32 64 128 256 512 1024

[edit] See also

computes the differences between adjacent elements in a range
(function template)
sums up a range of elements
(function template)