std::hypot
| Defined in header  <cmath> | ||
| float       hypot( float x, float y ); | (1) | (since C++11) | 
| double      hypot( double x, double y ); | (2) | (since C++11) | 
| long double hypot( long double x, long double y ); | (3) | (since C++11) | 
| Promoted    hypot( Arithmetic1 x, Arithmetic2 y ); | (4) | (since C++11) | 
x and y, without undue overflow or underflow at intermediate stages of the computation.The value computed by this function is the length of the hypotenuse of a right-angled triangle with sides of length x and y, or the distance of the point (x,y) from the origin (0,0), or the magnitude of a complex number x+iy
| Contents | 
[edit] Parameters
| x, y | - | values of floating-point or integral types | 
[edit] Return value
If no errors occur, the hypotenuse of a right-angled triangle, √x2
+y2
, is returned.
If a range error due to overflow occurs, +HUGE_VAL, +HUGE_VALF, or +HUGE_VALL is returned.
If a range error due to underflow occurs, the correct result (after rounding) is returned.
[edit] Error handling
Errors are reported as specified in math_errhandling
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- hypot(x, y), hypot(y, x), and hypot(x, -y) are equivalent
-  if one of the arguments is ±0, hypotis equivalent to fabs called with the non-zero argument
-  if one of the arguments is ±∞, hypotreturns +∞ even if the other argument is NaN
- otherwise, if any of the arguments is NaN, NaN is returned
[edit] Notes
Implementations usually guarantee precision of less than 1 ulp (units in the last place): GNU, BSD, Open64
std::hypot(x, y) is equivalent to std::abs(std::complex<double>(x,y))
POSIX specifies that underflow may only occur when both arguments are subnormal and the correct result is also subnormal (this forbids naive implementations)
[edit] Example
#include <iostream> #include <cmath> #include <cerrno> #include <cfenv> #include <cfloat> #include <cstring> #pragma STDC FENV_ACCESS ON int main() { // typical usage std::cout << "(1,1) cartesian is (" << std::hypot(1,1) << ',' << std::atan2(1,1) << ") polar\n"; // special values std::cout << "hypot(NAN,INFINITY) = " << std::hypot(NAN,INFINITY) << '\n'; // error handling errno = 0; std::feclearexcept(FE_ALL_EXCEPT); std::cout << "hypot(DBL_MAX,DBL_MAX) = " << std::hypot(DBL_MAX,DBL_MAX) << '\n'; if(errno == ERANGE) std::cout << " errno = ERANGE " << std::strerror(errno) << '\n'; if(fetestexcept(FE_OVERFLOW)) std::cout << " FE_OVERFLOW raised\n"; }
Output:
(1,1) cartesian is (1.41421,0.785398) polar
hypot(NAN,INFINITY) = inf
hypot(DBL_MAX,DBL_MAX) = inf
    errno = ERANGE Numerical result out of range
    FE_OVERFLOW raised[edit] See also
| raises a number to the given power (xy) (function) | |
| computes square root (√x) (function) | |
| (C++11) | computes cubic root  (3√x) (function) | 
| returns the magnitude of a complex number (function template) | |
| 
C documentation for hypot
 | |