std::proj(std::complex)
From cppreference.com
Defined in header
<complex>
|
||
template< class T >
complex<T> proj( const complex<T>& z ); |
(1) | (since C++11) |
std::complex<long double> proj( long double z );
|
(2) | (since C++11) |
template< class DoubleOrIngeter >
std::complex<double> proj( DoubleOrInteger z ); |
(3) | (since C++11) |
std::complex<float> proj( float z );
|
(4) | (since C++11) |
Returns the projection of the complex number z
onto the Riemann sphere.
For most z
, std::proj(z)==z, but all complex infinities, even the numbers where one component is infinite and the other is NaN, become positive real infinity, (INFINITY, 0) or (INFINITY, -0). The sign of the imaginary (zero) component is the sign of std::imag(z).
(since C++11)Additional overloads are provided for float, double, long double, and all integer types, which are treated as complex numbers with zero imaginary component.
Contents |
[edit] Parameters
z | - | complex value |
[edit] Return value
the projection of z
onto the Riemann sphere
[edit] Example
Run this code
#include <iostream> #include <complex> int main() { std::complex<double> c1(1, 2); std::cout << "proj" << c1 << " = " << std::proj(c1) << '\n'; std::complex<double> c2(INFINITY, -1); std::cout << "proj" << c2 << " = " << std::proj(c2) << '\n'; std::complex<double> c3(0, -INFINITY); std::cout << "proj" << c3 << " = " << std::proj(c3) << '\n'; }
Output:
proj(1,2) = (1,2) proj(inf,-1) = (inf,-0) proj(0,-inf) = (inf,-0)
[edit] See also
returns the magnitude of a complex number (function template) |
|
returns the squared magnitude (function template) |
|
constructs a complex number from magnitude and phase angle (function template) |
|
C documentation for cproj
|